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Abstract
Models for three-dimensional macromolecular chains with various angular
constrains at thermal equilibrium at room temperature, based on quantum
mechanics and a variational procedure, are presented. We get: (i) compact and
systematic expressions for the effective quantum kinetic energy Hamiltonian
operators (for the unconstrained slowly varying angular degrees of freedom
characterizing the macromolecule, responsible for its flexibility), consistently
with general requirements, and (ii) effective quantum partition functions. Both
(i) and (ii) could, at a later stage, provide further insight or be helpful for specific
computations. Open freely rotating chains are studied in detail: the method
also yields classical partition functions for them, which imply the existence
of persistence lengths consistently. Other macromolecular chains also treated,
more succinctly, are: (1) closed-ring freely rotating, (2) open freely rotating
with further constraints (helical-like, star-like, . . .), (3) open freely rotating
double-stranded.

1. Introduction

Macromolecular chains constitute an attractive research field [1–7]. In generic macromolecular
chains, atoms are subjected to effective potentials which, near their minima, can be
approximated by harmonic-oscillator-like vibrational potentials. Let a macromolecule be at
thermal equilibrium, at absolute temperature T (�300 K), and let kB be Boltzmann’s constant.
In many cases, its vibrational degrees of freedom about equilibrium configurations have zero-
point energy quanta larger than kBT [8, 9] and should be treated quantum mechanically [10, 11].
Moreover, they can be represented approximately by ground state wavefunctions and decouple
consistently, yielding constant bond lengths and, eventually, bond angles and other angular
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constraints. See [12, 13] for the above philosophy for freely jointed macromolecules (without
angular constraints) and their consistency with the standard Gaussian model. Here, we shall
generalize those ideas when angular constraints exist in flexible macromolecules and obtain
reliable effective Hamiltonians and partition functions for them, depending only on the relevant
unconstrained (slowly varying) angular degrees of freedom. The contents of this work are as
follows. Section 2 deals with the results of the variational computation for open freely rotating
macromolecular chains. Further results are given in appendix A. Appendix B discusses the
consistency of the effective quantum description. Section 3 outlines results for the other
macromolecular chains (1)–(3), as indicated in the abstract. As an application, the classical
limit for open freely rotating chains and its physical consistency are treated in section 4.
Section 5 contains the conclusions and some discussions.

2. Open freely rotating macromolecular chain

In three-dimensional space, we shall consider a system of N non-relativistic atoms, with
masses Mi . Let Ri , RCM and yi (1 � i � N − 1) be the position vectors of the atoms,
those of the centre of mass (CM) and the relative ones for the atoms, respectively. One has
RCM = M−1 ∑N

i=1 Mi Ri and yi = Ri+1 − Ri (M = ∑N
i=1 Mi ). The quantum Hamiltonian

operator is H̃1+Eel, H̃1 = − ∑N
i=1(h̄

2/2Mi )∇2
Ri

+U . h̄ is Planck’s constant and ∇ is the gradient
operator. We are treating the molecular chain in the framework of the Born–Oppenheimer
approximation [8], so that the (most rapidly varying) electronic degrees of freedom have already
been integrated out and their effect is accounted for by Eel + U . Eel (<0) is the electronic
energy (essentially, a constant), which will always be subtracted. U is the remaining (real)
atomic potential energy. We get H̃1 = −(h̄2/2M)∇2

RCM
+ H̃ , with (y ≡ (y1, y2, . . . , yN−1)):

H̃ = − h̄2

2

N−1∑
i, j=1

Ai j∇yi · ∇y j + U(y). (1)

The constants Ai j are given by: M−1
i + M−1

i+1 if i = j ; −M−1
i if j = i − 1 or j =

i + 1; and 0, otherwise. U = U(y) is independent on RCM. We shall suppose that,
approximately, nearest-neighbour atoms interact through harmonic-oscillator-like potentials
Vj = (2A j j)

−1ω2
0, j (y j − d j )

2 (y j = |y j |) with vibrational frequencies ω0, j and bond lengths
d j [12], and that similar potentials exist between atoms which are next-to-nearest neighbours:
Vj, j+1 = 2−1 B j, j+1ω

2
0, j, j+1(|y j + y j+1| − d j, j+1)

2. ω0, j, j+1 are other frequencies, d j, j+1 are

lengths such that |d j − d j+1| � d j, j+1 � d j + d j+1 and B j, j+1(M
−1
j + M−1

j+1) = 1. Then,

U(y) =
N−1∑
j=1

Vj +
N−2∑
j=1

Vj, j+1. (2)

For suitably large ω0, j, j+1,
∑N−2

j=1 Vj, j+1 hinders parts of the allowed internal rotations in
the macromolecular chain, which becomes a freely rotating one. On physical grounds,∑N−2

j=1 Vj, j+1 could approximate for the effect of the covalent bonding due to successive single
pairs of shared electrons, which produce precisely those hindrances [1–3]. In three-dimensional
spherical coordinates,

− ih̄∇yi = −ai

yi
− ih̄uyi

∂

∂yi
, (3)

yi = yi uyi , ai = ih̄uθi

∂

∂θi
+ ih̄uϕi

1

sin θi

∂

∂ϕi
, (4)

uyi = (cosϕi sin θi , sin ϕi sin θi , cos θi), (5)
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uθi = (cosϕi cos θi , sin ϕi cos θi ,− sin θi), (6)

uϕi = (− sin ϕi , cosϕi , 0). (7)

The vectors uyi ,uϕi ,uθi constitute an orthonormal set. One has
∏N−1

l=1 d3yl = [dy] =
[
∏N−1

l=1 y2
l dyl][dΩ], with [dΩ] ≡ ∏N−1

l=1 dϕl dθl sin θl . Let θ ≡ (θ1, . . . , θN−1) and ϕ ≡
(ϕ1, . . . , ϕN−1). For large N , let the chain be in thermodynamical equilibrium, at T � 300 K.
The quantum partition function Z for the chain is [14]

Z = Tr[exp[−(kBT )−1 H̃ ]] =
∑
σ

exp

[
− Eσ

kBT

]
. (8)

Here, Tr represents the trace, σ denotes here the set of all quantum states and Eσ are the
eigenvalues of the entire spectrum of the quantum Hamiltonian H̃ . The degrees of freedom
associated with RCM have been factored out. We shall suppose [8, 9]

h̄ω0,l > kBT, h̄ω0,l >
h̄2 All

d2
l

, (9)

h̄ω0,l,l+1 > kBT, h̄ω0,l,l+1 >
h̄2 All

d2
l

, (10)

for any l. Based upon Z and equations (9), (10), the following variational computation will
lead to a model for an open freely rotating chain, in which all d j and d j, j+1 are given constants.
We choose the variational (radial–angular) wavefunction�(y) as

�(y) = φnn(y)φnnn(y)ψσ (θ, ϕ), (11)

φnn(y) =
N−1∏
l=1

φl , φl = d−1
l

[
ω0,l

π h̄ All

]1/4

exp

[
− ω0,l

2h̄ All
(yl − dl)

2

]
. (12)

We choose φnnn(y) = ∏N−2
l=1 φl,l+1. φl,l+1, associated with Vl,l+1, is

φl,l+1 =
[
ω0,l,l+1 Bl,l+1

π h̄

]1/4

exp

[
−ω0,l,l+1 Bl,l+1

2h̄
(|yl + yl+1| − dl,l+1)

2

]
. (13)

As all frequencies ω0,l and ω0,l,l+1 become suitably large, localized Gaussians approach Dirac
delta functions (wrad = [

∏N−1
l=1 d−2

l δ(yl − dl)]):

|φnn(y)φnnn(y)|2 → wradwang, (14)

wang =
[N−2∏

l=1

δ(|dluyl + dl+1uyl+1 | − dl,l+1)

]
. (15)

The complex functionsψσ (θ, ϕ) (σ now being a set of quantum numbers) are arbitrary, except
for some restrictions: (i) they are periodic in each ϕi with period 2π and independent of any
yl ; and (ii) they are normalized with respect to the scalar product:

(ψ1, ψ2) ≡
∫

[dΩ]wangψ1(θ, ϕ)
∗ψ2(θ, ϕ). (16)

One evaluates, as all frequencies ω0,i , i = 1, . . . , N − 1, and ω0,l,l+1, l = 1, . . . , N − 2, grow
large, the quantum expectation value 〈�, H̃�〉 ≡ ∫

[dy]�(y)∗H̃�(y), by using equations (9)–
(16). The computations, which generalize non-trivially those in [15], are very lengthy and will
be omitted. For previous (and far simpler) variational calculations, see [13] and references
therein. One finds

〈�, H̃�〉 =
∫

[dΩ]ψ∗
σ (θ, ϕ)wang E0ψσ (θ, ϕ) + (ψσ , H̃angψσ ), (17)

(ψσ , H̃angψσ ) =
∫

[dΩ]ψ∗
σ (θ, ϕ)wang H̃angψσ (θ, ϕ), (18)
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for any normalized ψσ (θ, ϕ) fulfilling the above requirements. Due to certain remarkable
exact cancellations, E0 turns out to be independent of θ, ϕ and equals the sum of the zero-
point energies associated with all Vi and Vj, j+1: E0 = ∑N−1

i=1 2−1h̄ω0,i +
∑N−2

i=1 2−1h̄ω0,i,i+1.
In turn, the angular Hamiltonian H̃ang is

wang H̃ang = wang H̃ang,0 +wangOang(h̄), (19)

(ψ1, H̃ang,0ψ2) =
∫

[dΩ]
1

2

N−1∑
i, j=1

Ai j

di d j
(eiψ1(θ, ϕ))

∗wang(e jψ2(θ, ϕ)) (20)

with el ≡ ih̄uyl − al , l = 1, . . . , N − 1. wangOang(h̄) denotes the set of all remaining
contributions which do not depend on any of the frequencies ω0,i and ω0,i,i+1. wangOang(h̄) is
proportional to h̄2 and it does not contain differential operators acting upon ψσ (θ, ϕ) (that is,
wangOang(h̄) acts multiplicatively on ψσ (θ, ϕ)). Explicit forms ofwang H̃ang,0 and wangOang(h̄)
are given in appendix A.

Let�σ be an arbitrary orthonormal set of wavefunctions for the system. It is not required
that the �σ coincide with the exact eigenfunctions of H̃ . Then, the exact Z in equation (8)
satisfies Peierls’ variational inequality [14]:

Z �
∑
σ

exp[−(kBT )−1〈�σ , H̃�σ 〉], (21)

where the equality holds if �σ is the complete set of exact eigenfunctions of H̃ . In our case,
�σ = �(y) and 〈�σ , H̃�σ 〉 are given in equations (11) and (17)–(20). Then,

Z � exp[−(kBT )−1 E0]Zang, (22)

Zang ≡
∑
σ

exp

[
−(kBT )−1

∫
[dΩ]ψ∗

σ (θ, ϕ)wang H̃angψσ (θ, ϕ)

]
. (23)

Zang can be regarded as the effective three-dimensional quantum partition function for the
unconstrained angular degrees of freedom of the freely rotating chain. Some integrations
by parts show that H̃ang,0 and H̃ang are Hermitian operators (with respect to the scalar
product in equations (16)). We shall suppose that all angular wavefunctions ψσ (θ, ϕ) are
the complete set of all orthonormalized eigenfunctions of H̃ang, so that equation (23) becomes
Zang = Tr[exp[−(kBT )−1 H̃ang]]. The quantum mechanical description of the chain provided
by H̃ang is physically consistent, as shown in appendix B.

3. Generalizations to other macromolecular chains

We have obtained quantum mechanical models for other three-dimensional macromolecular
chains in thermodynamical equilibrium at absolute temperature T , by generalizing the above
analysis and variational approach in section 2 and appendices A and B. In all cases, we
have shown that the corresponding E0 is independent of angles and equals the sum of
the corresponding zero-point energies. The structures of the resulting effective quantum
Hamiltonian and partition function are similar to the ones above for the freely rotating one and
will be either omitted or given succinctly.

(1) Closed-ring freely rotating chain. Let yN ≡ − ∑N−1
j=1 y j and let yN = |yN |. Both yN and

yN depend on the 2(N −1) angles characterizing y j , j = 1, . . . , N −1. Equation (2) will
now be replaced by Ucr(y) = U(y)+VN +V1,N +VN−1,N , with VN = 2−1 BNω

2
0,N (yN −dN )

2

(BN(M
−1
1 + M−1

N ) = 1) and Vl,N = 2−1 Bl,Nω
2
0,l,N (|yl +yN |−dl,N )

2 (Bl,N (M
−1
l + M−1

N ) =
1) for l = 1, N − 1. Thus: (i) another harmonic-oscillator-like potential exists between
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the first (i = 1) and the last (i = N) atoms (VN ), (ii) other two harmonic-oscillator-
like potentials exist between the first and the (N − 1)th atoms (VN−1,N ) and between
the second and the N th atoms (V1,N ). ω0,N , ω0,1,N and ω0,N−1,N are new (also large)
frequencies. dN , d1,N and dN−l,N are other lengths (|dl − dN | � dl,N � dl + dN ,
l = 1, N − 1). We use the same φnn(y) as in equation (11), but φnnn(y) also includes
φNφ1,NφN−1,N . On the other hand, φN = d−1

N [ω0,N BN/π h̄]1/4 exp[−(ω0,N BN/2h̄)(yN −
dN )

2], while φl,N = [ω0,l,N Bl,N /π h̄]1/4 exp[−(ω0,l,N Bl,N/2h̄)(|yl + yN | − dl,N )
2] for

l = 1, N − 1. We get the same H̃ang,0 while wang = d−2
N δ(yN − dN )δ(|d1uy1 + dN uyN | −

d1,N )[
∏N−1

l=1 δ(|dluyl + dl+1uyl+1 | − dl,l+1)], with yN = yN uyN . Notice that δ(yN − dN )

now makes the macromolecule become a closed ring, while δ(|d1uy1 +dN uyN |−d1,N ) and
δ(|dN−1uyN−1 + dN uyN | − dN−1,N ) constrain the angles between uy1 and uyN and between
uyN−1 and uyN , respectively. As a consistency check, we treat a closed-ring freely jointed
macromolecular chain, without potentials hindering angles (Ucr(y) = ∑N−1

j=1 Vj + VN ).

Now, wang = d−2
N δ(yN − dN ). We have shown here that the effective Hamiltonian for

the closed-ring freely jointed chain (given through equations (A.1) and (A.2)) coincides
exactly with the lengthier one given as the sum of several contributions in a previous
computation [15].

(2) Open freely rotating chain with further constraints. In an open freely rotating
macromolecular chain, let additional similar potentials exist so that the total potential
energy is Ufc(y) = U(y) +

∑
n(�3)

∑
i(�1) ui−1;i−1+n . U(y) is given in equation (2),

while ui−1;i−1+n = 2−1 Bi−1;i−1+nω
2
0,i−1;i−1+n(|

∑n−1
j=0 yi−1+ j | − di−1;i−1+n)

2. ω0,i−1;i−1+n

are large frequencies, di−1;i−1+n are lengths and Bi−1;i−1+n(M
−1
i−1 + M−1

i−1+n) = 1. The
sums over n and i involve only some subset of atoms, so the chain still has a large number
λN (0 < λ < 1) of unconstrained angles and, so, it has some flexibility. We now have
wang = [

∏N−2
l=1 δ(|dluyl +dl+1uyl+1 |−dl,l+1)][̇

∏
n

∏
i δ(|

∑n−1
j=0 di−1+ j uyi−1+ j |−di−1;i−1+n)].

The new potentials u could approximate the covalent bonding between some pairs of atoms,
due to double pairs of shared electrons (even in resonance cases) [1–3]. These choices
could model hydrogen bonds or the case of a ‘helix’.
We have also treated star polymers (SP). We treat the case of n arms (n � 3), all
of which start from a certain atom (‘the vertex or origin of the star’), with position
vector R0 and mass M0. The r th arm has Nr atoms (without counting the ‘vertex’),
forming a linear subchain (1 � r � n). The mass and the position vector of the
i th atom along the r th arm are M (r)

i and R(r)
i (1 � i � Nr ). The centre-of-mass

(CM) position vector and the relative (‘bond’) ones along the r th arm are RCM and y(r)i

(1 � i � Nr ): RCM = [M0R0 +
∑n

r=1

∑Nr
i=1 M (r)

i R(r)
i ]/M and y(r)i = R(r)

i − R(r)
i−1

(M = M0 +
∑n

r=1

∑Nr
i=1 M (r)

i and R(r)
0 ≡ R0). Below, let (y(1)1 , . . .) ≡ y. The SP

potential energy U(y)SP equals the sum of those for all arms (each of them similar to
that in equation (2)), plus all those between the first atom in the r th arm and the vertex,
plus all those constraining the bond angles between all y(r)1 and y(r)2 and between all pairs

y(r)1 and y(r
′)

1 (r 	= r ). After separating RCM, equation (1) is replaced by Kkin,SP + USP,
Kkin,SP = −(h̄2/2)

∑N−1
i, j=1

∑N−1
r,r ′=1 Ar,r ′

i j ∇y(r)i
∇y(r

′ )
j

being equal to

− h̄2

2M0

[ n∑
r=1

∇y(r)1

]2

−
n∑

r=1

Nr∑
i=1

h̄2

2M (r)
i

(∇y(r)i
− ∇y(r)i+1

)2 (24)

and ∇yr
Nr +1

≡ 0. Equation (A.1) holds, its right-hand side now being∑N−1
i, j=1

∑N−1
r,r ′=1(2d(r)i d(r

′)
j )−1 Ar,r ′

i j [e(r)i (wange(r
′)

j )]. wang equals the product of those for
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all arms (each of them similar to that in section 2) times all those constraining the bond
angles between all y(r)1 and y(r)2 and between all pairs y(r)1 and y(r

′)
1 (r 	= r ′).

(3) Open freely rotating double-stranded chain. A previous quantum model for an open freely
jointed double-stranded macromolecular chain, given in [12], has now been generalized to
one for an open freely rotating double-stranded chain. An attractive total potential energy
Uds among atoms belonging to different strands, responsible for the existence of the double
strand as a bound state, is included. Let z denote the relative position vector between the
two centres of mass of the two single chains. We now start from equations (50)–(54)
in [12], provided that we also include, for each single chain, a suitable

∑N−2
j=1 Vj, j+1

and a factor φnnn in the variational wavefunction. Let all frequencies be larger than
(kBT )/h̄ but still not so large as to produce an appreciable break-up or dissociation of
the double-stranded chain into two separated single chains. Then, Peierls’ inequality also
yields an effective quantum partition function for the freely rotating double-stranded (ds)
chain as exp[−(kBT )−1 E0] Tr[exp[−(kBT )−1 H̃Q,ds,ang]]. The quantum Hamiltonian is
wds,ang H̃ds,ang = wds,ang[−(h̄2/2Mred)(∇z)

2 + Uds +
∑2

r=1 H̃ (r)
ang,0 + Ods,ang(h̄)]. wds,ang is

the product of two terms, each of them like that in equation (15).

4. Open freely rotating chain: simpler Hamiltonian and classical limit

The variational states � in equation (11) are genuinely quantum mechanical (see the end of
appendix B). In spite of this, it will be possible to proceed to the classical (h̄ → 0) limit,
as we shall see. Starting from equations (19) and (20) for the freely rotating chain, we shall
perform a further variational computation, in order to arrive at a more manageable effective
Hamiltonian, in terms of which the transition to the classical limit can be carried out directly.
Before undertaking this, we shall express the 2(N − 1) angular variables in θ and ϕ in terms
of another set of 2(N − 1) more suitable ones. The latter will be chosen to be θ1, . . . , θN−1,
ϕ0 (≡(N − 1)−1 ∑N−1

j=1 ϕ j) and β j, j+1 ≡ uy j uy j +1 (= cos θ j cos θ j+1 + sin θ j sin θ j cos(ϕ j+1 −
ϕ j)), j = 1, . . . , N − 2. One has: [dΩ] = [

∏N−2
j=1 dβ j, j+1] dϕ0[

∏N−1
l=1 dθl]J , the Jacobian

J depending on all θ j and β j, j+1. The angular constraint now becomes ((uy j uy j +1)
(0) =

(2d j d j+1)
−1(d2

j, j+1 − d2
j − d2

j+1))

wang =
[N−2∏

j=1

d j, j+1

d j d j+1

][N−2∏
j=1

δ(β j, j+1 − (uy j uy j +1)
(0))

]
. (25)

In the further variational computation, we shall consider restricted angular wavefunctions
ψσ ≡ ψres;σ = ψres;σ (θ, ϕ0) which are independent of any β j, j+1, j = 1, . . . , N − 2. On
the other hand, ψres;σ is an arbitrary function of θ1, . . . , θN−1 and ϕ0, which is periodic in
ϕ0 with period 2π , and is normalized with respect to the scalar product in equation (16).
We shall define a restricted effective angular Hamiltonian H̃ang,res (acting only upon the
restricted wavefunctions ψres;σ ) through (ψres;1, H̃angψres;2) = (ψres;1, H̃ang,resψres;2). H̃ang,res

is also Hermitian and we choose the ψres;σ to be the complete set of its (orthonormalized)
eigenfunctions. Another application of Peierls’ inequality (21) to equation (23) gives

Zang � Tr exp[−(kBT )−1 H̃ang,res] ≡ Zang,res. (26)

Coming back to equation (26), we perform all integrals associated with [
∏N−2

j=1 dβ j, j+1] in

(ψres;1, H̃ang,resψres;2), by using all delta functions contained in wang. Then, the resulting
equation (26) has an adequate form for performing the h̄ → 0 limit, under additional
assumptions. In agreement with (9) and (10), around room temperature the individual slowly
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varying internal rotations about bonds (unconstrained in freely rotating macromolecular chains)
have typical energies about two orders of magnitude smaller than the vibrational energies h̄ω0,i

and h̄ω0,l,l+1 [2, 8, 9]. Also, let kBT > (h̄2 All)/(d2
l ), so that an appreciable number of excited

states for those unconstrained rotations are occupied and quantum operators and statistics can
be approximated by classical ones. All quantities of order h̄ or higher (such as wangOang(h̄))
can be neglected. Then, the Hamiltonian H̃ang,res becomes, in the classical (C) limit,

H̃C,ang,res = 2−1
N−1∑
i, j=1

(di d j)
−1 Ai j aC,res;i · aC,res; j . (27)

The aC,res;i are classical variables (arising from the classical limit of −ei ): aC,res;i =
−[uθi Pθi + ((N − 1) sin θi)

−1uϕi Pϕ0 ]. Pθi and Pϕ0 are the classical momenta canonically
conjugate to θi , i = 1, . . . , N − 1, and ϕ0. In the classical limit, Zang,res becomes the
corresponding classical partition function ZC,ang,res. One performs all Gaussian integrations
in ZC,ang,res over the classical momenta Pθi and Pϕ0 . Then,

ZC,ang,res = 1

(2π h̄)N
2π[2πkBT ]N/2

∫ [N−1∏
l=1

dθl

]
[DN ]−1/2. (28)

DN is the N ×N symmetric matrix formed by the coefficients of Pϕ0 and Pθi , i = 1, . . . , N −1,
in H̃C,ang,res. Previously, a rather different variational computation for freely rotating
macromolecular chains [13] has provided a different total zero-point energy (E ′

0, dependent
on all (uy j uy j +1)

(0)), restricted effective quantum angular Hamiltonian (H̃ ′
ang,res) and quantum

partition function Z ′
ang,res. A new result here is that, even if E ′

0 	= E0, the above H̃C,ang,res

and ZC,ang,res coincide with the classical limits H̃ ′
C,ang,res and Z ′

C,ang,res of H̃ ′
ang,res and Z ′

ang,res,
respectively. Let d j = d , j = 1, . . . , N − 1, and Mi = M0, i = 1, . . . , N . Equation (28)
(which may be useful in numerical computations) implies, on the basis of [13] and some long-
distance approximations, the existence of a persistence length dpl (>d). So, on a suitably large
length scale, the classical freely rotating chain described by equation (27) can be approximated
by a freely jointed one having Npl bonds (Npl < N −1) and a new bond length dpl, with overall
rotational invariance. Consider many classical freely rotating chains (of identical or different
kinds) in thermal equilibrium at T : chemical reactions may take place among pairs of chains,
to give other pairs of chains. Through standard studies of chemical reactions [9], the explicit
dependence on T of the equilibrium constant for those reactions follows from those in
equation (28) (for the partition function of each reacting freely rotating chain); similar
conclusions hold if star polymers are involved.

5. Conclusions and critical discussion; the role of excitations

Effective quantum Hamiltonians and partition functions at T � 300 K, in terms of
unconstrained (slowly varying) angular variables, have been obtained for the following
macromolecular chains: open freely rotating, and (1) closed-ring freely rotating, (2) open
freely rotating with further constraints, (3) open freely rotating double-stranded. Physical and
mathematical structures related to the Born–Oppenheimerapproximation have been displayed,
which may yield further insight. Our variational computations are non-trivial generalizations
of those leading to the Heisenberg–Dirac Hamiltonian describing spin–spin interactions of
atoms in magnetic materials [16]. Additional (residual) potential energies Ures, depending
on the still unconstrained angular degrees of freedom, can be taken into account through
exp[−(kBT )−1Ures] in the effective partition functions, which may provide a basis for further
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(analytical or numerical) computations. It also seems possible to study approximately some
excitations of the effective Hamiltonians (at least, in some simplified cases); this lies beyond
our scope here.

We shall also discuss briefly the role of excited vibrational states. We start with an
open freely jointed chain, so that: (i) U(y) = ∑N−1

j=1 Vj in equation (2); (ii) �(y)1 =
φnn,1(y)ψσ (θ, ϕ); (iii) φnn,1(y) = ∏N−1

l=1 φl,n(l), φl,n(l) (n(l) = 0, 1, 2, . . . , n(l,max)) being,
essentially, the n(l)th eigenfunction of Vj , for suitably large ω0,l [12]. The Vj are physically
reliable here as long as we include only a reasonable subset formed by its lower eigenfunctions,
with finite n(l,max) < +∞. Then, one continues to apply Peierls’ inequality, �σ now
being all the above �(y)1. For h̄ω0,l > kBT , one finds equations (17), (18) and (22) with
wang ≡ 1 and exp[−(kBT )−1 E0] replaced by Zvibr = exp[−(kBT )−1 E0 +

∑N−1
l=1 ln[1 −

exp(−(n(l,max) + 1)(h̄ω0,l/kBT ))]/[1 − exp(−(h̄ω0,l/kBT ))]]. For n(l,max) not large,
Zvibr is better approximated by exp[−(kBT )−1 E0] and the contributions of excited vibrational
states and of superpositions thereof (approximating collective excitations along the chain—
say, longitudinal) become more negligible as all h̄ω0,l/(kBT ) become larger, in qualitative
agreement with [10] and [11]. Similar conclusions seem to hold, on a suitably large length
scale, for a freely rotating chain: recall that the latter can be approximated, on such a scale,
by a freely jointed one having Npl bonds and a new bond length dpl. Similar statements may
hold (for suitable large length scales) for other chains provided that they have a number of
unconstrained angular degrees of freedom proportional to N . Finally, we turn to an open
long macromolecular chain such that every atom oscillates about some position R(0)

i fixed in
the macromolecule, n(l,max) being not small and all frequencies being �h̄−1kBT and not
much larger than h̄2 All/d2

l . Overall rotations of the whole macromolecule are disregarded in
what follows. Then, a possible approximation consists in replacing the actual total potential
U(y) by a sum, Uahp(y), of approximate harmonic potentials, analogous to those for crystals,
although the R(0)

i are not distributed with strict periodicity. As N is large, some, at least, of
the vibrational normal modes described by Uahp(y) about those fixed positions may resemble,
more or less, collective excitations propagating along the chain with different frequencies ωα
(α being indices or parameters which distinguish different modes), in qualitative agreement
with [16, 17]. Those excitations can be classified roughly as ‘acoustic’ or ‘optical’, depending
on whetherωα can become appreciably smaller than h̄−1kBT or not. ‘Optical’ excitations (with
frequencies that are �h̄−1kBT ) may play a role similar to the vibrations of an open freely jointed
chain, discussed above. Peierls’ inequality (for the quantum partition function determined by
U(y) or Uahp(y)) retaining only more or less localized�σ having frequencies that are �h̄−1kBT
would lose accuracy, and would not suffice for yielding reasonable approximations, due to
the ‘acoustic’ excitations with h̄ωα < kBT . On the other hand, one could approximate the
quantum description of those ‘acoustic’ vibrational excitations with suitably small frequency
(h̄ωα < kBT ) by a classical one [9, 16].
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Appendix A. Expressions for H̃ang,0 and Oang

wang H̃ang,0 = 1

2

N−1∑
i, j=1

Ai j

di d j
[ei · (wange j)], (A.1)
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wangOang(h̄) = 1

2

N−1∑
i=1

[
− h̄2 Aii

d2
i

wang +
Aii

2
(−ih̄∇yi )

2wang,1

]

−
N−1∑
i=1

1

2Mi

[
(−ih̄∇yi−1 ) · (−ih̄∇yi ) +

1

2
(−ih̄∇yi−1 ) ·

(
ih̄uyi

∂

∂yi

)

+
1

2
(−ih̄∇yi ) ·

(
ih̄uyi−1

∂

∂yi−1

)
+

1

2

(
ih̄uyi

∂

∂yi

)
·
(

ih̄uyi−1

∂

∂yi−1

)]
wang,1.

(A.2)

So,wangOang(h̄) contains first and second derivatives ofwang,1 ≡ [
∏N−2

l=1 δ(|yl +yl+1|−dl,l+1)].
It is understood that in equation (A.2), after having differentiated with respect to all yl ,
one sets yl = dl for l = 1, . . . , N − 1. In order to define H̃ang,0, it seems that one
should divide the right-hand side of equation (A.1) by wang which, in turn, would lead to
mathematically unpleasant expressions such as w−1

ang[alwang]. Fortunately, notice that we also

define H̃ang,0 through equation (20), for the generic functionsψ1,ψ2 appearing in equation (16)
(and making all integrals converge). In the integral yielding (ψ1, H̃ang,0ψ2), the expression
w−1

ang[alwang] does not appear, so our procedure is mathematically correct. Upon performing
algebraic manipulations, it will be economical (in particular, in appendix B) to work with
expressions in which w−1

ang times some angular derivative of wang appears eventually. Such
formal expressions receive mathematical support from performing integrations in the scalar
product in equation (16).

Appendix B. Probability conservation and overall rotational invariance

Let the freely rotating macromolecular chain be,at time t , in a pure stateψ = ψ(θ, ϕ; t). Then,
the latter evolves slowly through the Schrödinger equation: wang H̃angψ = ih̄wang(∂ψ/∂ t).
This yields the continuity equation

1

2ih̄

N−1∑
i, j=1

1

sin θi

Ai j

di d j
aad;i [sin θiwang · (ψ∗a jψ − ψa jψ

∗)] = ∂[wangψ
∗ψ]

∂ t
. (B.1)

In turn, aad;i acting upon an arbitrary f = f (θ, ϕ; t) is defined as aad;i f = ih̄(∂( f uθi )/∂θi) +
(ih̄/ sin θi)(∂( f uϕi )/∂ϕi). Equation (B.1) implies total probability conservation consistently:
∂(

∫
[dΩ]wangψ

∗ψ)/∂ t = 0.
The fact that H̃ang,0 is given in terms of e j appears to suggest that the latter

operators could play an important role. Since, according to (16), (ψ1, e jψ2) =∫
[dΩ]ψ∗

1 (θ, ϕ)wange jψ2(θ, ϕ), it turns out that (ψ1, e jψ2) 	= (e jψ1, ψ2); that is, e j is
not Hermitian. However, the new quantum variables eh; j defined through wangeh; j ≡
wange j − 2−1a jwang are Hermitian (h) operators as regards equations (16). The quantum
variables eh; j , which could be regarded as some sort of transverse momenta for the actual
freely rotating chain, have certain interesting properties. In order to display them, the orbital
angular momenta for the j th bond, l j = y j × (−ih̄)∇y j , have also to enter into the game.
l j is not Hermitian in the scalar product (16) either. However, the new operator lh; j such
that wanglh; j ≡ wangl j + 2−1l jwang is Hermitian with respect to equations (16). Then,
Lh = ∑N−1

j=1 lh; j is the total orbital angular momentum operator, which is also Hermitian.

An important question of principle is whether the actual (Hermitian) Hamiltonian H̃ang is
invariant under overall rotations—that is, whether H̃ang commutes with the total orbital angular
momentum Lh . In order to answer that question, we shall need some useful algebraic
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relations. Let eh; j,α and lh; j,α , α = 1, 2, 3, be the cartesian components of eh; j and lh; j ,
respectively ( j = 1, . . . , N − 1). Some algebra yields the following commutation relations
([A, B] = AB − B A): [eh;k,α, eh; j,β] = −ih̄δk, jεαβγ lh; j,γ , [lh;k,α, eh; j,β] = ih̄δk, jεαβγ eh; j,γ

and [lh;k,α, lh; j,β] = ih̄δk, jεαβγ lh; j,γ . δk, j and εαβγ are, respectively, the Kronecker delta and
the totally antisymmetric tensor with three indices (ε123 = +1 etc). On the other hand, for any
function f which depends solely on scalar products of the various vectors uyl among themselves
(or only on scalar products of the vectors yl among themselves), but not on uϕl , uθl , one has [8]∑N−1

j=1 l j f = 0. Consequently
∑N−1

j=1 l jwang = 0 and, hence, Lh = ∑N−1
j=1 l j , Lhwang = 0 and

Lhwang,1 = 0. Using the above commutation relations, one finds [H̃ang,0,Lh] = 0. Finally,
we recall the expression for Oang(h̄) in equation (A.2). We realize that, in the latter equation,
the various operators acting uponwang,1 are expressed as scalar products of the −ih̄∇yi among
themselves, of −ih̄∇yi with ih̄uy j

∂
∂y j

, with j = i ±1, and of ih̄uy j
∂
∂y j

with ih̄uy j
∂
∂yi

( j = i ±1).

All such scalar products commute with
∑N−1

j=1 l j . Then, one readily finds [Oang(h̄),Lh] = 0.

Consequently, H̃ang is invariant under overall rotations: [H̃ang,Lh ] = 0.
It is easy to see that the quantum uncertainty of eh, j,α in ψσ (a generic normalized

eigenfunction of H̃ang) develops contributions linear in h̄ω0,l,l+1.
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